Forklift Alternators and Starters

Forklift Starters and Alternators - Today's starter motor is usually a permanent-magnet composition or a series-parallel wound direct current electrical motor together with a starter solenoid mounted on it. Once current from the starting battery is applied to the solenoid, basically via a key-operated switch, the solenoid engages a lever that pushes out the drive pinion that is located on the driveshaft and meshes the pinion using the starter ring gear that is found on the engine flywheel.

When the starter motor begins to turn, the solenoid closes the high-current contacts. When the engine has started, the solenoid consists of a key operated switch which opens the spring assembly in order to pull the pinion gear away from the ring gear. This particular action causes the starter motor to stop. The starter's pinion is clutched to its driveshaft by means of an overrunning clutch. This allows the pinion to transmit drive in only one direction. Drive is transmitted in this manner through the pinion to the flywheel ring gear. The pinion continuous to be engaged, like for instance since the driver did not release the key as soon as the engine starts or if the solenoid remains engaged as there is a short. This actually causes the pinion to spin separately of its driveshaft.

The actions discussed above would stop the engine from driving the starter. This vital step prevents the starter from spinning really fast that it will fly apart. Unless adjustments were made, the sprag clutch arrangement would prevent utilizing the starter as a generator if it was made use of in the hybrid scheme discussed prior. Usually an average starter motor is intended for intermittent use which will prevent it being used as a generator.

The electrical parts are made so as to function for approximately 30 seconds in order to avoid overheating. Overheating is caused by a slow dissipation of heat is because of ohmic losses. The electrical components are meant to save cost and weight. This is actually the reason nearly all owner's instruction manuals intended for vehicles recommend the driver to pause for a minimum of 10 seconds after each and every ten or fifteen seconds of cranking the engine, if trying to start an engine which does not turn over at once

In the early 1960s, this overrunning-clutch pinion arrangement was phased onto the market. Before that time, a Bendix drive was utilized. The Bendix system operates by placing the starter drive pinion on a helically cut driveshaft. As soon as the starter motor begins spinning, the inertia of the drive pinion assembly allows it to ride forward on the helix, therefore engaging with the ring gear. When the engine starts, the backdrive caused from the ring gear enables the pinion to go beyond the rotating speed of the starter. At this moment, the drive pinion is forced back down the helical shaft and thus out of mesh with the ring gear.

In the 1930s, an intermediate development between the Bendix drive was developed. The overrunning-clutch design which was developed and introduced during the 1960s was the Bendix Folo-Thru drive. The Folo-Thru drive consists of a latching mechanism along with a set of flyweights in the body of the drive unit. This was much better in view of the fact that the typical Bendix drive used so as to disengage from the ring when the engine fired, even though it did not stay functioning.

When the starter motor is engaged and begins turning, the drive unit is forced forward on the helical shaft by inertia. It then becomes latched into the engaged position. When the drive unit is spun at a speed higher than what is attained by the starter motor itself, for example it is backdriven by the running engine, and afterward the flyweights pull outward in a radial manner. This releases the latch and enables the overdriven drive unit to become spun out of engagement, therefore unwanted starter disengagement could be avoided prior to a successful engine start.